
Informe técnico / Technical Report IT1/2009

Cp3--, un preprocesador del lenguaje de programación
C++ para gestión de módulos

Cp3--, a C++ programming language preprocessor for Module
Management

Palabras clave: Programación orientada a objetos, lenguajes de programación, programación modular.
Keywords: C++, Object-oriented programming, programming languages, modular programming

Resumen: El soporte para programación modular es muy pobre en el lenguaje de programación C++. En realidad, sólo hay
disponibles herramientas de sustitución de texto, a través del preprocesador de C++, para cualquier proyecto. En este documento, se
presenta una herramienta especialmente diseñada para el soporte de módulos. La principal ventaja de esta herramienta es que permite
la gestión de proyectos de gran envergadura, con módulos, a la vez que permite la programación tradicional en C++, lo cuál es útil
para usar en código antiguo, o mezclar código antiguo con código nuevo. Esto funciona, símplemente, porque el preprocesador sólo
trata aquellos archivos con extensión .cp3/.mpp. Además, permite seleccionar el nivel de rigidez en cuanto al uso de técnicas
orientadas a objetos.

Abstract: Module management support is very poor in the C++ programming language. In the end, only text substitution tools are
available, through the C++ preprocessor, in order to support modules in a given project. In this document, a tool specially designed
for supporting modules in C++ is presented. The main advantage of this tool is that it allows to manage large, module-based
projects, as well as it allows programmers to still use C++ in the same way they are used to, for example for legacy code, as this tool
just acts as a translator that creates the appropriate header and implementation files,with a .cp3/.mpp extension. Finally, it allows to
enforce object-oriented programming by preventing some programming techniques to be used (though this can be adjusted through
command-line options).

Área de Lenguajes y Sistemas Informáticos
Departamento de Informática
Universidad de Vigo

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

Cp3--
C++ Preprocessor for Module Management

J. Baltasar García Perez-Schofield
Faculty of Computer Science, Edif. Politécnico, s/n. Campus As Lagoas, University of Vigo

jbgarcia@uvigo.es

Abstract. Module management support is very poor in the C++ programming language. In the end,
only text substitution tools are available, through the C++ preprocessor, in order to support modules
in a given project. In this document, a tool specially designed for supporting modules in C++ is
presented. The main advantage of this tool is that it allows to manage advanced projects, as well as
it allows programmers to still use C++ in the same way they are used to, for example for legacy
code, as this tool just acts as a translator that creates the appropriate header and implementation
files, provided the extension of the file is .cp3/.mpp. Finally, it allows to enforce object-oriented
programming by preventing some programming techniques to be used (though this can be adjusted
through command-line options).

1 Introduction
The module management capabilities of the C++ programming language are nearly zero
(Stroustrup, 1986). The main basis is the linker, allowing to connect a function call through
different translation units.

The remaining mechanisms are mere text substitution tools, residing in the preprocessor.
Follows a discussion of these possibilities: a) file inclusion. This is carried out by the preprocessor
directive #include. This directive involves the substitution of the whole file for the line in which it
is found; b) preprocessor conditionals, allowing to detect whether the header file has been already
compiled or not (#ifndef); c) programmers knowledge, which makes programmers to divide their
code in interface files (headers) and implementation files (cpp files). However, the C or C++
programming languages never suggest or give an unique way to do this.

It is worth noting that in ISO C++ 1998 there are two kind of files: header files, with the 'h'
extension, and implementation files, with the 'cpp' extension. The former one is expected to contain
function prototypes and constant declarations, while all the implementations should be put in the
latter one (this changes a little bit when using the inline implementation for methods).

Finally, the way to divide code in this two kind of files is fairly mechanical when one learns
how to do so, and therefore introduces the possibility of being automated by the compiler itself, or
at least by an auxiliary tool such as the one introduced here.

The remainder of this paper is organized as follows: in the next section, a simple case is
shown, so the value of the proposal can be fully understood. Then, the complete set of
transformations, as well as the limitations of the C++ dialect supported are discussed. Finally,
conclusions and future work are presented.

2 A case of study
The objective of this tool is to allow better (in terms of simplicity and a high-level abstraction)
modular programming support in C++. Firstly, programmers do not need to learn a new language
nor new constructions, as the C++ language has been left untouched, though only an (intended)
subset of it is supported. Finally, this approach can let programmers merge modules created with
this tool with regular, already existing standard header or implementation C++ files, so transition

 Departament of Computer Science. University of Vigo. Page 2/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

becomes as smooth as possible.
The following examples present simple cases of modules that are going to be easily

generated by Cp3.

2.1 Utility modules

Probably the simplest example of module is the one that is composed by functions, such as the
algorithm standard module. In C++ there are two ways for encapsulating simple functions: the
classic way of creating them as static function members inside a class, and the modern (since 1998)
way of putting them inside a namespace.

A really simple example could be the maths module, in which we are going to provide the PI
constant and the sqr() function. Firstly the standard C++ version is presented.

// math.h
#ifndef MATH_H
#define MATH_H

namespace Math {
const double PI = 3.1415927;

double sqr(double x);

}

#endif

// math.cpp

#include “maths.h”

double Math::sqr(double x)
{

return x * x;
}

The variations around this example consist of declaring the constant to be extern, which
would allow the programmer to drop the use of the preprocessor constants. The programmer could
also mark the function as inline. This module is so simple and the difficulties about its construction
are so few, that the weak module support mechanisms of C++ are clearly shown as one of the main
obstacles programmers must face to.

The Cp3 version, quite simpler, is shown below. Programmers must just concentrate only in
creating the module, without having to worry about C++ limitations. It is worth noting that the
programming language is left untouched: the inline keyword marks whether this function should be
marked as an inline function, or in the case of member functions, in the header file (with the same
resulting consideration). Also, the constant is declared in the header file with an extern
automatically, while the actual definition will lie in the implementation file.

// math.mpp

namespace Math {

const double PI = 3.1415927;

 Departament of Computer Science. University of Vigo. Page 3/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

inline double sqr(double x)
{

return x * x;
}

}

The presented source code is a Cp3 file that will be translated to the previous files,
automatically. As stated before, the involved process is so mechanic that it is very simple to
automatize it.

2.2 Object-oriented programming

This simple module, Person, presents a constant, DefaultName, and various getters and setters.
Follows the source code for standard C++.

// person.h
#ifndef PERSON_H
#define PERSON_H
#include <string>

namespace BussinessLogic {

class Person {
public:

static const std::string DefaultName;
static const std::string DefaultSurname;

Person(const std::string &s = DefaultSurname,
 const std::string &n = DefaultName)
: name(n), surname(s)
{}

const std::string &getName() const
{ return name; }

const std::string &getSurname() const
{ return surname; }

const std::string &getEmail() const
{ return email; }

unsigned int getAge() const
{ return age; }

const std::string &getAddress() const
{ return address; }

std::string toString() const;

void setAge(unsigned int a);
void setAddress(const std::string &a);
void setEmail(const std::string &e);

private:
std::string name;
std::string surname;
std::string address;
unsigned int age;
std::string email;

 Departament of Computer Science. University of Vigo. Page 4/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

};

}

#endif

The previous source code fragment is the interface of this module. Though some variations
are possible (such as declaring setters as inline, and defining them in the interface file), this is
probably the most classical translation of this module.

#include “person.h”

const std::string BussinessLogic::Person::DefaultName = “John”;
const std::string BussinessLogic::Person::DefaultSurname = “Doe”;

void BussinessLogic::Person::setAge(unsigned int a)
{

age = a;
}

void BussinessLogic::Person::setAddress(const std::string &a)
{

address = a;
}

void BussinessLogic::Person::setEmail(const std::string &e)
{

email = e;
}

std::string BussinessLogic::Person::toString() const
{

std::string toret = getSurname();

toret += “, “;
toret += getName();
toret += “ (“;
toret += getEmail();
toret += “)”;

return toret;
}

The implementation of this module just gives a body to setters, as well as the toString()
member function. However, the weight of the code related to workaround the lack of support for
modules in C++, as well as the knowledge required to know how to divide the code, is also the
primary concern here. Although the seasoned C++ programmer gets used to this schema, that
doesn't mean it could not be done easier. There is also a lack of support for changes: if the
programmer decided that setters could be inline, it would involve porting valuable amounts of code
from one file to the other one.

By means of the Cp3 tool, it is possible to translate the following source code for the module
to the source presented above. Note that the generated code is not thought to be human-readable,
nor also to be the main source code for the project. The only, human-readable, source coude for any
project would be the .mpp files (any change to the cpp or h files will be lost the next time the
module is compiled).

 Departament of Computer Science. University of Vigo. Page 5/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

// person.mpp
#include <string>
namespace BussinessLogic {
class Person {
public:

static const std::string DefaultName;
static const std::string DefaultSurname;

inline Person(const std::string &s = DefaultSurname,
 const std::string &n = DefaultName)

: name(n), surname(s)
{}

inline const std::string &getName() const
{ return name; }

inline const std::string &getSurname() const
{ return surname; }

inline const std::string &getEmail() const
{ return email; }

inline unsigned int getAge() const
{ return age; }

inline const std::string &getAddress() const
{ return address; }

std::string toString() const {
std::string toret = getSurname();

toret += “, “;
toret += getName();
toret += “ (“;
toret += getEmail();
toret += “)”;

return toret;
}

void setAge(unsigned int a) {
age = a;

}

void setAddress(const std::string &a) {
address = a;

}

void setEmail(const std::string &e) {
email = e;

}
private:

std::string name;
std::string surname;
std::string address;
unsigned int age;
std::string email;

}
}

 Departament of Computer Science. University of Vigo. Page 6/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

We can even decide to put the setters member functions, as shown, to be inline: it would just
be a matter of preceding them with the inline keyword. The presented source code is a cp3 file that
will be translated to the previous files, automatically. Again, the involved process is so simple
(although tedious and error-prone) that it should be carried out by the compiler or an auxiliary tool
(the very case presented here).

3 The C++ dialect supported
While this module manager was designed for the standard C++ programming language, the author
decided to actually drop some of the possibilities of the language mainly those related to the
extreme flexibility of C for variable declaration, as they include unneeded and undesirable
ambiguity. Along with this decision, it was also stated that the C++ subset chosen for this dialect
should be left unchanged, i.e. apart from the obvious differences due to the utility of this tool itself,
there shouldn't be any difference in the programming language. The learning curve would thus be as
smooth as possible. The objective should be for seasoned C++ programmers to be able to get full
advantage of the system within of minutes.

The main difference between standard C++ and this dialect (modular C++, mC++ from now
on), is the mandatory use of namespaces. While these are optional in C++, design issues suggest the
benefits of using them (Stroustrup, 1998).

The complexities of the programming language have been exposed repeatedly in time.
Frequently, it has been said that a subset of C++ is trying to get out from a language (Stroustrup,
2000) that is so firmly rooted in C, resulting in very complex syntax, such as the existence of
different syntax variations for variable declarations, to put an example.

A modular version of C++ must obligatorily limit the spureous possibilities of the language:
possibly, when they are really needed, a modular approach is probably not the best one. In that
cases, programmers will be facing with device driver programming and other low level application
projects.

3.1 Preprocessor macros

Preprocessor macros are simply not allowed. From the preprocessor, only the #include directive is
left, with the same meaning it normally has, as the intention was to avoid changing the language at
all. This is actually the reason preventing changing this for some meaningful keyword, such as
using (probably like in using module), already present in the programming language.

A more high-level of abstraction directive, import, already present in the language, is
available, with no actual changes to the #include, as it is translated to that preprocessor tool. It can
also coexist with the standard form. The motivation for this was only to remove any hint about the
cpp, the C++ preprocessor being used at all.

// math.mpp

namespace Math {
const double PI = 3.1415927;

inline double sqr(double x) {
return x * x;

}
}

// person.mpp
#include <iostream>

 Departament of Computer Science. University of Vigo. Page 7/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

#include <string>
import Math;

using namespace std;

namespace BussinessLogic {
class Person {
public:

static const std::string CanonicalName = "John Doe";
// more things...

}
};

3.2 Namespaces

Namespaces are supported exactly as they are presented in standard C++. The only difference is the
addition of support for the public and private labels.

namespace A {
static void bar() {
}
void foo() {
}

}

In the case shown above, the use of “static” means private, while its absence means
“public”. This behaviour is supported, though a more high-level, intuitive fashion is added:

namespace A {
public:

void foo() {
}

private:
void bar() {
}

}

When an inner namespace is found in the private section of a given namespace, then its
members are private, not public. Also note that neither of these mechanisms can be applied to
classes, only to objects.

A side note should be taken into account about the using directive. The reasons for this can
be shown in this example:

#include <string>
using std::string;

namespace StrUtil {
std::string &rtrim(std::string &x)
{

/* more here... */
}

 Departament of Computer Science. University of Vigo. Page 8/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

std::string <rim(std::string &x)
{

/* more here... */
}

std::string &trim(std::string &x)
{

string &aux = ltrim(x);
return rtrim(aux);

}
}

While the using directive declares that the class string can be used without being fully
qualified, it is still needed to use std::string in the function member declaration. This is because it
was decided to avoid the inclusion of any using directive in headers. The inclusion of using in
headers would avoid any possibility of identifier isolation. As soon as a using directive was used, it
would mean the mandatory use of that identifier in case of a missing full qualification, and even
worse, the possibility of identification clash. That would make the use of namespaces totally
ineffective.

3.3 Functions

Functions are allowed due to the hybrid (i.e., not pure) nature of C++. It is not uncommon to find
functions outside classes even in modern C++ (for example, in the algorithm module), as many
times the use of a simple function eliminates unnecessary hassle. This is covered in other languages
with the use of classes that are just wrappers for various static member functions (a possibility still
available in standard C++ but unneeded due to the presence of namespaces).

However, when a function is created as a member of namespace, then that namespace can
only contain other functions, not classes. The reverse case is also true: one class can be declared in
one namespace, and nothing else. The strictness in applying these rules can be adjusted through
command-line options, however, as discussed later.

The only modifiers allowed here are static (meaning private visibility within the
namespace), and inline, as a petition to substitute the code of the function instead of creating a
function call. These are the same meanings they have in the very same context in C++.

3.4 Constants

Constants are allowed as members of a namespace. The modifier const is mandatory here.
Constants can be found in any module, no matter whether there is a class or a set of functions
defined there.

3.5 Classes

A big effort has been put into parsing classes correctly. All classes can be written, in general, as if
there weren't actually two files to refer to, acting, therefore, transparently. Insights are given in the
following sections.

namespace foo {

class A {
private:

 Departament of Computer Science. University of Vigo. Page 9/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

int x;
public:

void foo() {
cout << “Hello” << endl;

}
};

}

The semicolon at the end of the class is optional. In any case, there is no support for creating
objects directly in that part of the class declaration. Object creation is achieved from inside methods
in the usual way, or as members of the namespace:

namespace foo {

class A {
private:

int x;
public:

void foo() {
cout << “Hello” << endl;

}
};

A obja;

}

3.5.1 Member functions

Member functions (or methods), are actually the main reason of this whole work (probably along
with static member fields, and plain functions). The very same modifiers are used in methods, being
the only difference the inclusion of the code in the same file, along with the member declaration.

There are, however, some issues that are worth noting.

class Counter {
private:

int count;
public:

Counter(int inic = 0)
{ count = inic; }

inline int getCount() const
{ return count++; }

};

The inline keyword is now mandatory if the programmer wants to have the code of a method
substituted instead of being called when used. Note that this is still a hint for the compiler: the use
of the inline keyword, or the inclusion of a method in the class declaration does not guarantee that
the function will be inlined. The final decision is always taken by the compiler.

3.5.2 Constructors and destructors

Constructors are full supported, including the explicit keyword, and the quick initialization list.
Also, as any other method in the class, the inline keyword is supported, meaning that the
constructor will be included inside the class declaration, and therefore inlined when used.
Destructors are full supported, without any change.

 Departament of Computer Science. University of Vigo. Page 10/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

class Counter {
private:

int count;
public:

inline explicit Counter(int inic = 0) : count(inic)
{}

virtual ~Counter()
{}

inline int getCount() const
{ return count++; }

};

3.5.3 Member fields

Member fields do not vary at all. However, the static ones can be initialized inside the class,
homogeneously. Indeed, it would be an error to initialize any member field: the semantics of
constructors are left unchanged.

class Person {
public:

static const unsigned int MaxAge = 120;

Person(const std::string &n, int a)
: name(n), age(a)
{ if (age > MaxAge) {

throw std::runtime_error(“impossible age”);
} }

~Person()
{}

inline unsigned int getAge() const
{ return age; }

inline const std::string &getName() const
{ return name; }

private:
std::string name;
unsigned int age;

};

3.5.4 Inheritance

Inheritance is absolutely untouched. A class can inherit from any other class, with the appropriate
visibility modifiers (public, protected and private).

class Employee: public Person {
public:

Employee(const std::string &n, int a, double w)
: Person(n, a), wage(w)
{}

inline double getWage() const
{ return wage; }

private:
double wage;

};

 Departament of Computer Science. University of Vigo. Page 11/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

3.5.5 Encapsulation

There isn't any change to encapsulation within classes. Examples about encapsulation and visibility
have been shown along with this section.

3.5.6 Polymorphism (late binding)

In standard C++, polymorphism is (syntactically) achieved through the use of the keyword 'virtual',
and sometimes the colophon “= 0”. This is because in standard C++ a method can be written
directly inside the class (implying the inlining of the function member), or outside it, (living
normally in a separate, implementation file). The mentioned colophon syntactically differentiates
the pure virtual function (without implementation) from the latter, when they don't have a body.

For the sake of simplicity, however, mC++ does not allow nor needs the colophon anymore,
as all methods have their implementations besides them, in a single file. If a member function is
declared virtual and does not have a body, then it is understood as a pure virtual function.

The standard C++ example would therefore be:

// Figure.cpp
class Figure {
public:

virtual double calculateArea() = 0;
};

While the same example using mC++ would be:

// Geometry.Figure.mpp
namespace Geometry {

class Figure {
public:

virtual double calculateArea(); // “= 0” is optional
}

}

4 Behaviour of Cp3

The default behaviour of Cp3 discussed above, can be modified to be more or less flexible.
Depending on the command line option passed to the preprocessor the following changes will be
applied.

Option Effect

No command line option Same as –level=3.

--level=3 All limitations.

--level=2,
--level=1

Functions and classes can be mixed in the
same namespace. More than one class allowed
per namespace, more than one namespace
allowed per main (outer) namespace.

--help Copyright message and usage.

--force Avoid time stamp checking

 Departament of Computer Science. University of Vigo. Page 12/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

5 Related work
The standardization committee has produced at least five documents about supporting modules in
C++, of which I would like to refer to revision 2 (Vandevoorde, 2005) and revision 5 (Vandevoorde,
2007). In the first one, a mechanism more or less similar to the one studied here is discussed.
However, the standardization committee is more ambitious about supporting modules than the
current approach. One of the clearly stood objectives are to decrease compilation times. This made
the proposal evolute to the current state (revision 5), the second one mentioned above. In this state,
the standardization committee has chosen to approach from a totally different point of view (more
similar to Modula-2), out of the namespace-centric approach taken here.

Preprocess (Hohmuthm 2004), is an unpublished tool that more or less uses the same
approach taken here. However, the author is not concerned about macros, does not support
namespaces and certainly his objective is not to obtain a clean, simple standard-compliant schema.

6 Satisfaction Results
A seminar was organised for undergraduate students, in an advanced subject, for all of them wishing
to test this tool. The subject is called “Object Technology”, in the Computer Science degree at the
University of Vigo. Test were performed on course 2008-2009.

Before and after the seminar, a pretest and a posttest (a corresponding version of both tests
translated into English is included in appendixes B and C) was delivered to students in order to
check, basically, whether they a) had found the system helpful for the understanding of modular
programming, b) had found the system useful for learning, c) which characteristics would they
improve. More than twenty students answered these tests for year 2009. A comparison between the
results obtained in pretest and posttest is found in Appendix A.

The results of the questionnaires are quite encouraging, as a wide majority of the answers
suppose a high degree of satisfaction. These tests were done to a set of undergraduate students,
which had a seminar of two hours in which they were taught on using the system, and finally had to
complete some exercises.

Some of the questions were repeated in both tests, in order to study the change in opinion
after working with the system. Their opinion about their own knowledge was important, so their
were asked about how deep they thought their knowledge was about modular programming. In the
pretest, more of the 90% answered they had some or advanced knowledge. This percentage
decreases in around a 10% in the posttest, giving interesting details: there is an increasement in the
number of students saying they have some knowledge, while the number of students with deep
knowledge decreases in about a 38%, This can be explained because of the weak training in
modular programming students receive, specially when they study C++. Other languages, such as
Java, make this modularity mandatory, but many times this is transparently managed by an
integrated environment, and somehow this probably makes them unaware of code factorization
taking place, or at least, having any benefit.

About the question of whether they though this programming technology was useful for
teaching, students answered with more than a 90% that it was useful, with no significative changes.

A control question was also put in both tests in order to check whether thay have understood
the concepts around the tool. More than a 80% answered the correct question in both tests, and
more than a 90% answered this one and another possible correct option. The percentage of students
answering “I don't know”, decreased from 10% to 0% in the posttest.

Another question was related to the usefulness of modular programming. Again, students
answering “I don't know” decreased from 5% to 0% in the posttest, while the though of modular
programming being useful in theory and practice increased from around a 75% to an 85%, as well

 Departament of Computer Science. University of Vigo. Page 13/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

as there was an increasement of students thinking of modular programming being useful for
teaching.

The remaining questions were put there in order to know what they thought about the
prototype. The first one was related to whether they thought the use of a prototype would be an
important tool for their improvement in their studies. More of an 80% answered positively to this
question, which is a good result, given that more answering options were given in the posttest. The
only significative percentage of opinion of these other options were the answer “I don't know”,
with, however, less than 10 points.

More than a 60% thought that the use of the tool was simple, while the remaining students
thougth its average complexity was average (not simple nor complex). No one thought the
prototype was difficult to use.

An interesting question was what students liked and disliked about the prototype. More than
an 85% liked that it was simple to use, and that it automated the use of modules in C++. About the
characteristics they disliked, it was the very same answer with a 33% of students (probably they
thought it was too simple), while nearly a 62% disliked the restriction of use of some characteristics
of C++, which motivated the change in favour of improved flexibility commented in past sections.

About whether their perception of modular programming had changed after the use of the
prototype, more than a 71% recognized it was changed to some extent or even a lot.

The last two questions were presented in order to get their opinion about modular support in
C++. The first one shows how they think (>85%) that C++ should have a better modular
programming support, while the last one shows with more than an 90% that it would be better to
avoid including new syntax or constructions.

7 Performance
Initial measurements have been performed in order to have an proximate idea of the overload that
the preprocessor supposes for complete compilation. The test consisted in compiling a program
generated by the module manager one hundred times, and then do it again but executing the
preprocessor before. The obtained results are summarized in table 1. The first row corresponds with
a single module (Person2) being processed, while the second row stands for a module (Person)
which now depends on another module (Math), so Cp3 must be called twice.

Time for g++ Time for Cp3 & g++ Test

49 secs. 55 secs. (+11%) for((i=0;i<100;++i)); do
./cp3 Person2.mpp > /dev/null;
g++ Person2.mpp -o person2;

done

54 secs. 70 secs (+23%) for((i=0;i<100;++i)); do
./cp3 Person.mpp > /dev/null;
./cp3 Math.mpp > /dev/null;
g++ Person.cpp Math.cpp -o person;

done

Table 1: Results obtained in an Intel Core2duo e5200 - 4Gb RAM machine, running Ubuntu GNU
Linux 8.04 and using the GNU GCC compiler.

These results are encouraging: for a single module, only little more than a 10% of the time is
needed in order to obtain the final executable. When Cp3 is called twice the extra time needed rises
until 23% (under a fourth of the total time), which we think is a very good mark as the growth is
just linear.

The Cp3 tool is not specially designed to decrease compilation times at all; however, there
are still opportunities to improve that. Indeed, the preprocessor detects the time stamp of the target

 Departament of Computer Science. University of Vigo. Page 14/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

files before blindly reprocessing the module file (which would suppose recompilation of all
modules for tools such as make).

The specific batch files needed in order to carry out these tests are shown in the third column
of the table. Basically, a loop is repeated one hundred times in order to get the statistical results.
When measuring only GNU g++, the lines beginning with ./cp3 are removed.

8 Conclusions
Module management support for C++ is very poor. Though seasoned programmers are already
used, students and beginners find this need of separation of interface and implementation in two
parts strange and unnecessary complex.

In this document, the Cp3 preprocessor has been presented. It does not only eliminate the
defects of the file separation, but also enforces good object-oriented programming and procedural
programming practices, separating them in practical use, and thus giving a new sense to the hybrid
characteristics of C++.

The modifications made to the language are really minimal: the same keywords have the
same meaning in the same context. The only difference is that now, everything is unified in a single
file. This is straightforward, easy to understand, easy to use and better for learning C++ (from the
perspective of being a “new” language, definitely removing the need of learning C and then C++, as
well as the barrier between them).

9 References
Stroustrup, B. (2000). Learning Standard C++ as a New Language . Technical report in AT&T
Labs .
Vandevoorde, D. (2005). Modules in C++ (revision 2). Std. committee document N1778=05-0138
Vandevoorde, D. (2007). Modules in C++ (revision 5). Std. committee document N2316=06-0176
Hohmuth, M. (2004). Web link: http://os.inf.tu-dresden.de/~hohmuth/prj/preprocess/
Stroustrup, B. (1986). The C++ Programming Language . Addison-Wesley.
Stroustrup, B. (1998). An overview of the standard C++ programming language. Handbook of
Object technology. CRC press LLC Boca Ratón.

 Departament of Computer Science. University of Vigo. Page 15/21

http://os.inf.tu-dresden.de/~hohmuth/prj/preprocess/

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

10 Appendix A – Test results

Summary
PRETEST POSTTEST Compared

Knowledge of modular programming
No knowledge 4,76% 19,05% 14,29%
Some 42,86% 66,67% 23,81%
Deep knowledge 52,38% 14,29% -38,10%
Total 100,00% 100,00% 0,00%

Useful for lecturing
Yes 95,24% 90,48% -4,76%
No 0,00% 0,00% 0,00%
I don't know 4,76% 9,52% 4,76%
Total 100,00% 100,00% 0,00%

Module support in C++ is based on
Separate the program in different files 0,00% 0,00% 0,00%
Use namespaces 4,76% 19,05% 14,29%
Divide in modules, and them in .h and .cpp 85,71% 80,95% -4,76%
I don't know 9,52% 0,00% -9,52%
None of them 0,00% 0,00% 0,00%
Total 100,00% 100,00% 0,00%

Utility of modular programming
Useful in theory and practice 76,19% 85,71% 9,52%
Useful for lecturing 0,00% 4,76% 4,76%
Only in theory 4,76% 9,52% 4,76%
I don't know 14,29% 0,00% -14,29%
No useful at all 4,76% 0,00% -4,76%
Total 100,00% 100,00% 0,00%

The seminar was useful for you
Yes 90,48% 85,71% -4,76%
No 0,00% 14,29% 14,29%
I don't know 9,52% 0,00% -9,52%
Total 100,00% 100,00% 0,00%

Use a prototype for experimenting is...
Better than explanations with the blackboard 0,00% 0,00% 0,00%
Better comprehension with a prototype 100,00% 80,95% -19,05%
It does not matter 0,00% 4,76% 4,76%
It will make you acquire bad habits 4,76%
Definitely bad 0,00%
I don't know 9,52%
Total 100,00% 100,00% -14,29%

 Departament of Computer Science. University of Vigo. Page 16/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

Software use is
Simple 66,67% 100,00%
Medium 33,33%
Complex 0,00% 0,00%
Total 100,00% 100,00%

You don't like...
Automates 4,76% 33,33%
It is simple 28,57%
Limits the use of C++ 61,90% 61,90%
Nothing 4,76% 4,76%
Total 100,00% 100,00%

You like...
Automates 71,43% 85,71%
It is simple 14,29%
Limits the use of C++ 4,76% 14,29%
Nothing 9,52%
Total 100,00% 100,00%

Your perception about modular programing
Changed a lot 9,52% 71,43%
Changed a bit 61,90%
Didn't changed 28,57% 28,57%
Total 100,00% 100,00%

Better modular support in C++ would be
Excellent 38,10% 85,71%
Good 47,62%
I don't really care 14,29% 14,29%
Total 100,00% 100,00%

Keep syntax or create a new one
Keep syntax 90,48% 90,48%
Create new one 4,76%
I don't know 4,76% 9,52%
Total 100,00% 100,00%

 Departament of Computer Science. University of Vigo. Page 17/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

11 Appendix B – Pretest

PRETEST

Knowledge of modular programming
No knowledge 1 4,76%
Some 9 42,86%
Deep knowledge 11 52,38%
Total 21

Useful for lecturing programming
Yes 20 95,24%
No 0 0,00%
I don't know 1 4,76%
Total 21

Module support in C++ is based on
Separate the program in different files 0 0,00%
Use namespaces 1 4,76%
Divide in modules, and them in .h and .cpp 18 85,71%
I don't know 2 9,52%
None of them 0 0,00%
Total 21

Utility of modular programming
Useful in theory and practice 16 76,19%
Useful for teaching 0 0,00%
Only in theory 1 4,76%
I don't know 3 14,29%
No useful at all 1 4,76%
Total 21

Seminar useful for you
Yes 19 90,48%
No 0 0,00%
I don't know 2 9,52%
Total 21

Use a prototype for experimenting is...
Better than exercises in the blackboard 0 0,00%
Better comprehension with a prototype 21 100,00%
It does not matter 0 0,00%
Total 21

 Departament of Computer Science. University of Vigo. Page 18/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

12 Appendix C – Posttest

POSTTEST

Knowledge of modular programming
No knowledge 4 19,05%
Some 14 66,67%
Deep knowledge 3 14,29%
Total 21

Useful for lecturing
Yes 19 90,48%
No 0 0,00%
I don't know 2 9,52%
Total 21

Module support in C++ is based on
Separate the program in different files 0 0,00%
Use namespaces 4 19,05%
Divide in modules, and them in .h and .cpp 17 80,95%
I don't know 0 0,00%
None of them 0 0,00%
Total 21

You think that your knowledge about modules now is
Low 4 19,05%
Avergae 13 61,90%
High 4 19,05%
Total 21

The seminar was useful for you
Yes 18 85,71%
No 3 14,29%
I don't know 0 0,00%
Total 21

Your comprehension improved
Yes 19 90,48%
No 2 9,52%
I don't know 0 0,00%
Total 21

 Departament of Computer Science. University of Vigo. Page 19/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

Use a prototype for experimenting is...
Better than exercises in the blackboard 0 0,00%
Better comprehension with a prototype 17 80,95%
It does not matter 1 4,76%
It will make you acquire bad habits 1 4,76%
Definitely bad 0 0,00%
I don't know 2 9,52%
Total 21

Software use is
Simple 14 66,67%
Medium 7 33,33%
Complex 0 0,00%
Total 21

You like...
Automates 15 71,43%
It is simple 3 14,29%
Limits the use of C++ 1 4,76%
Nothing 2 9,52%
Total 21

You don't like...
Automates 1 4,76%
It is simple 6 28,57%
Limits the use of C++ 13 61,90%
Nothing 1 4,76%
Total 21

Your perception about modular programing
Changed a lot 2 9,52%
Changed a bit 13 61,90%
Didn't changed 6 28,57%
Total 21

Better modular support in C++ would be
Excellent 8 38,10%
Good 10 47,62%
I don't really care 3 14,29%
Total 21

Utility of modular programming
Useful in theory and practice 18 85,71%
Useful for teaching 1 4,76%
Only in theory 2 9,52%
I don't know 0 0,00%
No useful at all 0 0,00%
Total 21

 Departament of Computer Science. University of Vigo. Page 20/21

Technical Report - Cp3--, a C++ programming language preprocessor for Module Management

Keep syntax or create a new one
Keep syntax
Create new one 19 90,48%
I don't know 1 4,76%
Total 1 4,76%

21

 Departament of Computer Science. University of Vigo. Page 21/21

	1 Introduction
	2 A case of study
	2.1 Utility modules
	2.2 Object-oriented programming

	3 The C++ dialect supported
	3.1 Preprocessor macros
	3.2 Namespaces
	3.3 Functions
	3.4 Constants
	3.5 Classes
	3.5.1 Member functions
	3.5.2 Constructors and destructors
	3.5.3 Member fields
	3.5.4 Inheritance
	3.5.5 Encapsulation
	3.5.6 Polymorphism (late binding)

	4 Behaviour of Cp3
	5 Related work
	6 Satisfaction Results
	7 Performance
	8 Conclusions
	9 References
	10 Appendix A – Test results
	11 Appendix B – Pretest
	12 Appendix C – Posttest

