
A programming tool to ease modular programming
with C++

J. Baltasar García Perez-Schofield
Dpt. of Computer Science, University of Vigo

Edif. Fundición, s/n. Campus As Lagoas-Marcosende
Vigo, España

jbgarcia@uvigo.es

Francisco Ortín
Dpt. of Computer Science, University of Oviedo

 Calvo Sotelo s/n. 33007.
Oviedo, España
ortin@uniovi.es

Abstract— Module management support is very rough in the C
and C++ programming languages. Modules must be separated in
interface and implementation files, which will store declarations
and definitions, respectively. Ultimately, only text substitution
tools are available, by means of the C/C++ preprocessor, which is
able to insert an interface file in a given point of a translation
unit. This way of managing modules does not take into account
aspects like duplicated inclusions, or proper separation of
declarations and definitions, just to name a few. While the
seasoned programmer will find this characteristic of the language
annoying and error-prone, students will find it not less than
challenging. In this document, a tool specially designed for
improving the support of modules in C++ is presented. Its main
advantage is that it makes it easier to manage large, module-
based projects, while still allowing to use classic translation units.
This tool is designed for students who have to learn modular
programming; not only those in the computer science discipline,
but also those in other engineerings in which programming is
part of the curriculum.

Keywords: Learning, module management, preprocessor,
compiler, C++.

I. INTRODUCTION

The C++ programming language has its origin in C, which
itself has its origin between 1969 and 1973 [16]. From that date
of birth, the C programming language has undergone various
changes, firstly by its author, Dennis Ritchie, later by an ISO
standardization committee (ISO JTC1/SC22/WG14). Similarly,
C++ was born at the beginning of 1990 decade, created by
Bjarne Stroustrup [17], and taking the existing C programming
language at that time as basis. It has evolved heavily, firstly
due to its author, and lately by an ISO standardization
committee (ISO JTC1/SC22/WG21) [19].

Since other, more recent programming languages have not
had such a long history (Java [15], or C# [9]), they have
successfully solved many problems found in C and C++,
avoiding them due to a fresh design start (a fresh start has the
advantage of peventing backwards compatability problems). In
fact, the author of C++ has himself made various proposals
regarding the simplification of his programming language [20],
empowering new characteristics such as the use of STL library
or the explicit support of modular programming itself and
making programming simpler or homogeneous, meaning that
ambiguities are kept to a minimum.

A. Motivation

As in many other computer science faculties (for instance,
[4]), we have selected C++ to be the language of choice for the
first courses. While in the first course it is preferred over C
because of some higher abstractions (for instance, argument
passing by reference), it does also share the same basic syntax
with many other programming languages. Although C-like
syntax is often criticized, its use is broadly considered an
advantage, as learning the syntax part of the programming
language is time saved for other future programming
languages, such as Java and C#.

C++ was actually not designed for education: it was
designed for providing to C a higher programming paradigm
such as object-oriented programming, while maintaining its
performance. C syntax was also designed to be minimal, not
simple or easy to understand. Thus, it is not surprising that its
characteristics have a large room for improvement from an
educational point of view, while still being a highly successful
programming language.

One of the main challenges we have detected students must
face with is module management, in which C++ provides no
better abstraction than C. While in other programming
languages, such as C#, or Java, modules are specified with high
detail, and even automatically managed by programming
environments [5], in C or C++ modules are simply source code
scattered in various files (called translation units in C
terminology). The rules regarding how programs should be
factorized in translation units are clearly specified; however,
the relationship among the modules of the application and the
translation units which compose that application are not stated
[4].

An example illustrating the common problems when facing
modular programming in C++ follows. The objective of such a
simple example would be to create a very simple module in
which the PI constant and the sqr() function are defined. The
programmer will have to firstly understand that, in C and C++,
there is a separation of modules between the so called header
file (declarations, a .h file), and the implementation file
(definitions, a .cpp file). It is a good practice to divide
declaration and definition parts of modules, clearly stating the
interface of each module with the rest. However, the
mandatory division in two files is not even common currently.
This is just done in C++ that way because of the primitive
mechanisms available at the time when it was designed. This

This work has been partially funded by the Department of Science and
Technology (Spain) under the National Program for Research, Development and
Innovation; project TIN2008-00276 entitled “Improving Performance and
Robustness of Dynamic Languages to develop Efficient, Scalable and Reliable
Software”.

mechanisms for module programming support are just simple
text substitution. After all, many other modern programming
languages support modular programming. They emphasize
module interfaces, without the necessity of creating two
different files (their linkers are able to extract that information
automatically).

Next, students will have to understand that the
implementation file needs to include its own interface as well,
for just in case the constant PI is used inside it.

// math.h
#ifndef MATH_H
#define MATH_H
const double PI = 3.1415927;
double sqr(double x);
#endif

// math.cpp
#include “math.h”
double sqr(double x)

{ return x * x; }

Finally, students will have to create and use the so called
header guards (MATH_H in the code above), for the case in
which the header is included more than once in a single
translation unit (that would duplicate the existence of any class
declared or constant defined in the header file, the very case of
PI above). There are workarounds for avoiding this problem in
this very simple example, (though it involves learning the
meaning of the extern modifier), but header guards are required
more often than not, so the beginner will have to understand
the (very low-level) basics of the preprocessor, and get used to
creating them for any header file.

In this document, the Cp3-- tool is presented, allowing to
program in a simplified C/C++ subset, specifically in regard to
module management. The remaining parts of the document are
presented after this section: firstly, the state of the art is
discussed, and then the main characteristics of the preprocessor
are detailed. Some cases of study are then explained so it is
possible to study the main advantages of the tool. Finally,
results and initial performance measurements are shown,
following the conclusions.

II. THE HELP GIVEN BY THE MODULE MANAGER
PROTOTYPE

Although this module manager was designed for the
standard ISO C++ programming language, the authors took
two main design decisions, for the sake of simplicity. The first
one was to simplify data declarations, avoiding unneeded and
undesirable ambiguity (inherited from C). Along with this
decision, it was also stated that the C++ subset chosen for this
dialect should be left unchanged, i.e. apart from the obvious
differences due to the utility of this tool itself, there shouldn't
be any difference in the programming language. The learning
curve would thus be as smooth as possible. The objective is for
novel programmers to find it more homogeneous and more
coherent than standard C++, which would again be translated
in a smooth learning curve. Seasoned C++ programmers
should be able to get full advantage of the system in a matter of
minutes, while novel ones could avoid C++ complexities.

The complexities of the programming language have been
exposed repeatedly in time. Frequently, it has been said that a

subset of C++ is trying to get out from a language [20] that is
so firmly rooted in C, thus exporting a very complex syntax.
For instance, it is possible to use signed and unsigned
characters; it is possible to mark as constant a pointer, the
content it is pointing to, or even both... these and similar other
characteristics are interesting in some specialized contexts, but
from the educational point of view, they are confusing and
definitely not simple nor homogenous (from an educational
point of view, characters should just be able to represent all
characters the program can support; and also, marking a value
as constant should have one and only one meaning).

The main difference between standard C++ and this dialect
is the mandatory use of namespaces. While these are optional
in C++, design issues suggest the benefits of using them
(avoiding name clashing by means of making it possible to
arrange code in independent scopes, [18][19], introducing the
need of a more comprehensive support for modules, in order to
complement them). A modular version of C++, aimed at
students must obligatorily empower its higher-level
characteristics. When low-level C++ features are really needed,
a modular approach is probably not the best one. In that cases,
programmers will be facing with device driver programming or
similar projects; that is why the tool was designed to share its
existence with standard C++ programming, instead of trying to
substitute it all.

More emphasis has been put in two major uses of the
programming language for module creation: utility (function-
based) modules and classes (classed-based modules). First ones
are basically the best use of procedural programming,
regardless of whether object-oriented programming is used or
not. Second ones are the expected in object-oriented
programming in C++, except for the fact that it is not possible
to create objects along with the class declaration.

A more detailed discussion on this topic is given elsewhere
[7]. Besides, this tool can be found in the authors' website1.

A. Basic cases of study

C++ is a hybrid programming language, supporting both
procedural and object-oriented programming. The support of
procedural programming is done through the wrap of a version
of the C programming language, meaning that many programs
written in C can be compiled without modifications in C++.
The main difference between the C programming language and
the C version of the programming language included in C++ is
that the latter provides better compile-time verification
mechanisms, mainly by adding type-safety to the original C.
This means that C++ is more suitable, even for procedural
programming only, for students than plain C [4][20], as C++
provides them with better error checking, and true (or, at least,
at a higher level of abstraction) parameter passing by reference
for functions (this is actually very important, since it allows to
avoid pointers in introductory courses).

1) Procedural programming
Probably the simplest example of module is the one that is

composed by functions, such as the algorithm standard module
[11]. In C++ there are two ways for encapsulating simple
functions: the object-oriented way of creating them as static
function members inside a class, and the procedural one (since
1998) of putting them inside a namespace.

1 http://webs.uvigo.es/jbgarcia/prjs/cp3/

A really simple example could be the maths module, briefly
presented in the introduction, in which the PI constant and
some functions (such as sqr()) are going to be provided.

There are some variations around this example. The first
one would consist of abusing the separation of declarations and
definitions, putting the definition of PI in the header only. The
preprocessor guard constant (MATH_H) is explicitly used to
avoid duplicated definitions, in the case of multiple inclusions,
so it would compile correctly in any case. The programmer
could also declare some functions as inline. This module is so
simple and the difficulties about its construction are so few,
that the weak module support mechanisms of C++ are clearly
shown as one of the main obstacles novice programmers must
face to.

The Cp3-- version, quite simpler, is shown below. A
module is a single .mpp file. Students do only need to
concentrate in creating the module, marking the public
interfaces and hiding the implementation details, without
having to worry about the module management restrictions of
C++. It is worth noting that the programming language is
nearly left untouched: the inline keyword marks whether this
function should be marked as an inline function, or in the case
of member functions, shoule be stored in the header file (with
the same resulting consideration). Also, the constant PI is
declared in the header file with an extern automatically, while
the actual definition will lie in the implementation file.

// math.mpp
namespace Math {

const double PI = 3.1415927;
inline double sqr(double x)

{ return x * x; }
inline

 double addPercentage(double val, double x)
{ return (val * (1 + x)); }

 inline
 double removePercentage(double val, double x)

{ return (val - (val * x)); }
}

The presented source code is a single Cp3-- file that will be
translated to the previous files, automatically.

2) Object-oriented programming
The Person module uses the previous module Math shown

above, and presents two simple attributes, and various methods
returning attributes in the Person instance. Follows the source
code for ISO 1998 standard C++.

// person.h
#ifndef PERSON_H
#define PERSON_H
#include <string>
#include “math.h”
namespace Person {
class Person {
public:
 Person(const std::string &n, double s)
 : name(n), salary(s) {}
 double getSalary() const
 { return salary; }
 double getNetSalary() const
 { return Math ::

 removePercentage(salary, 0.20); }
 const std::string &getName() const
 { return name; }
 virtual std::string toString() const;
private:
 std::string name;
 double salary;
};
}
#endif

The previous source code fragment is the interface of this
translation unit (.h file), which was logically designed as a
module. Though again some variations are possible (such as
declaring toString() as inline, and defining them in the interface
file), this is probably the most classical translation of this
module.

// person.cpp
#include “person.h”
#include <iostream>
#include <sstream>
#include <cstdlib>
std::string Person::Person::toString() const
{
 std::ostringstream out;
 out << getName() << ", " << getSalary();
 return out.str();
}

// main.cpp
#include “person.h”
#include <iostream>
int main()
{
 Person::Person p("Baltasar", 1800);
 std::cout << p.toString() << std::endl;
 return EXIT_SUCESS;
}

The implementation file just gives a body to the toString()
member function. However, the complexity and number of
lines of code devoted to workaround the lack of explicit
support for modules in C++, as well as the knowledge required
to know how to divide the code, is also the primary concern
here. Although the seasoned C++ programmer has gotten used
to this schema, that doesn't mean it could not be done using a
higher abstraction.

There is also a lack of support for changes, profiling and
maintanability: in case the programmer decided to make setter
methods inline, it would involve porting valuable amounts of
code from one file to the other one. It must be taken into
account that in ISO C++ a method defined in the declaration of
the class is automatically inline, even when this is not explicitly
marked, which can led to confusion. This is solved in Cp3-- in
which there is not any difference between defining a member
inside the declaration. Thus, those members which are inline
must be always explicitly declared as inline. While these
decisions might be trivial for the seasoned programmer,
beginners will probably follow the approach of trial and error.

By means of the Cp3-- tool, it is possible to translate the
following source code of the Person module to the source
already presented above (the main.cpp file would be left
untouched). Note that the generated code is not thought to be

human-readable, nor also to be the main source code for the
project. The only, human-readable, source code for any project
would be the set of .mpp files (any change to the cpp or h files
will be lost the next time the module is compiled).

// person.mpp
#include <string>
#include <iostream>
#include <sstream>
#include <cstdlib>
#include “math.h”
namespace Person {
class Person {
public:
 Person(const std::string &n, double s)
 : name(n), salary(s)
 {}
 inline double getSalary() const
 { return salary; }
 inline double getNetSalary() const
 { return Math::removePercentage
 (salary, 0.20); }
 inline const std::string &getName() const
 { return name; }
 virtual std::string toString() const
 {
 std::ostringstream out;
 out << getName()
 << ", " << getSalary();
 return out.str();
 }
private:
 std::string name;
 double salary;
}
}

It is possible to put the getters member functions and the
toString() member function, as shown, to be inline: it would
just be a matter of preceding them with the inline keyword. In
fact, it is possible to essay the best approaches, by trial and
error, effortlessly. The presented source code is a single Cp3--
file that will be translated to both previous files, automatically.
Again, it must be remarked that the involved process is highly
tedious and error-prone, as it is a very low-level mechanism.

B. Implementation

This tool makes it possible to combine C++ translation
units with modules in the same project, as shown in Figure 1.
The tool simply ignores files that are not a module.

Cp3-- is therefore employed as a preprocessor, but it is
technically implemented as a compiler/translator. The input file
is parsed completely, apart from methods implementation,
which is left to the actual C++ compiler. The tool inserts
appropriate #line compiling directives so it is assured that
possible error messages will be correctly tracked to the actual
input file, instead of the generated files.

Figure 2 represents the abstract syntax tree for the maths
example shown before. Cp3-- does only read the input file
once, building all data structures alongside the parsing. Once
the tree has been built, it has been ensured that basic error
checking has been performed as well. In the next phase, the
tree is checked out following the Visitor pattern, and thus
performing additional checks, matching the strictness level
chosen by command line switches. If no error is found, the last
phase is triggered, in which the entities in the tree are visited
again in order to generate the source code for both interface
and implementation files [2].

Thus, error detection can be done before generating code,
and is indeed carried out automatically by the tool, even
allowing for the different levels of strictness discussed above.
For example, all methods must have an implementation (unless
they are pure virtual); modifiers, such as const or static, must
be correctly typed; their combinations must also be legal. This
way, a constant variable member is forced to be declared static,
as well as it must be static in order to be allowed to be
initialized. In procedural mode, only constants and functions
are allowed, and therefore a global variable will be marked as
erroneous.

Figure 2: An example abstract tree built by Cp3--.

Figure 3: Dependencies among files in ISO C++.

Figure 1: Processing scheme for Cp3--.

The purpose of the tool presented here is centered at
simplifying module management for C++. Even for the simple
example presented here, Figure 3 presents a set of fairly
complex relationships among interface and implementation
files, something that a seasoned C++ programmer is aware of,
but overwhelming for a student. Figure 4 shows the equivalent
relationships using Cp3--.

III. STATE OF THE ART

There are many other developments in research of learning,
such as IOPL [8], which is able to cover C++, or BlueJ [12]
[13][14], covering Java. However, none of them cover the
specific issue of making modular programming simpler.

There are also new programming languages, such as D [1]
[3][6], which try to ease C++ programming, including modular
programming. Unfortunately, these new programming
languages still have to prove themselves and gain popularity to
be broadly considered for education.

The C++ standardization committee has produced at least
five documents about supporting modules in C++, of which we
would like to refer to revisions 2 and 5 [21]. In the first one, a
mechanism more or less similar to the one studied here is
drafted. However, the standardization committee proposal
evolved to a more ambitious mechanism in revision 5. One of
the clearly stood objectives are to decrease compilation times.
In this state, the standardization committee has chosen to
approach from a totally different point of view (more similar to
Modula-2). This contrasts to the simpler, namespace-centric
approach taken here, in which one of the preconditions of the
work was to keep syntax changes to a minimum. In that sense,
the work of the committee seems to have gotten apart from our
interests. Even worse, there is still no agreement about modular
programming in the C++ standard committee, and apparently
will not make it in the next standards release, codenamed ISO
C++ 200x.

Preprocess [10], is an unpublished tool that more or less
uses the same approach taken here. However, the author is not
concerned about macros, does not support namespaces and
certainly his objective is not to obtain a clean, simple standard-
compliant schema. In general, it does not even completely
cover the ISO C++ 1998 [11][19].

LZZ [22] is another tool like Preprocess. However, it is at
the other side of the spectrum, trying to completely compile the
language. It therefore needs a careful installation process. For
example, in order to generate the #line directives, just for the
case there is a compiling error, special command line
arguments must be written. The includes directory for C and
C++ must also be provided so it is able to check the existence
of the headers included. On the other hand, the use of
namespaces is not mandatory, so identifiers in a module pollute
the main namespace. Finally, it also includes extensions for the
C++ programming language, something completely out of the
scope of this project.

IV. RESULTS

A seminar was organised for undergraduate students, in an
advanced subject, for all of them wishing to test this tool. The
subject is called “Object Technology”, in the Computer
Science degree at the University of Vigo. This Test was
performed on course 2008-2009.

Before and after the seminar, a pretest and a posttest was
delivered to students in order to check, basically, whether they
a) had found the system helpful for the understanding of
modular programming, b) had found the system useful for
learning, c) which characteristics would they improve. More
than twenty students answered these tests for year 2009. A
copy of the tests, as well as a comparison between the results
obtained in pretest and posttest is found elsewhere [7].

The results of the questionnaires are quite encouraging, as a
wide majority of the answers suppose a high degree of
satisfaction. These tests were done to a set of undergraduate
students, which had a seminar of two hours in which they were
taught on using the system for twenty minutes, and finally had
to complete some exercises.

Some of the questions were repeated in both tests, in order
to study the change in opinion after working with the system.
Their opinion about their own knowledge was important, so
their were asked about how deep they thought their knowledge
was about modular programming. In the pretest, more of the
90% answered they had some or advanced knowledge. This
percentage decreases in around a 10% in the posttest, giving
interesting details: there is an increasement in the number of
students saying they have some knowledge, while the number
of students with deep knowledge decreases in about a 38%,
This can be explained because of the weak training in modular
programming students receive, specially when they study C++.
Other languages, such as Java, make the use of modularity
mandatory, but many times this is transparently managed by an
integrated environment, and somehow this probably makes
them unaware of code factorization taking place, or at least,
having any benefit.

About the question of whether they thought this
programming technology was useful for teaching, students
answered with more than a 90% that it was useful, with no
significant changes.

A control question was also put in both tests in order to
check whether they have understood the concepts around the
tool. More than a 80% answered the correct question in both
tests, and more than a 90% answered this one and another
possible correct option (out of five possible answers). The
percentage of students answering “I don't know”, decreased
from 10% to 0% in the posttest.

Another question was related to the usefulness of modular
programming. Again, students answering “I don't know”
decreased from 5% to 0% in the posttest, while the thought of
modular programming being useful in theory and practice
increased from around a 75% to an 85%, as well as there was
an increase of students thinking of modular programming
being useful for teaching.

The remaining questions were put there in order to know
what they thought about the prototype. The first one was
related to whether they thought the use of a prototype would be
an important tool for their improvement in their studies. More

Figure 4: Dependencies among files using the tool.

of an 80% answered positively to this question, which is a good
result, given that more answering options were given in the
posttest. The only significative percentage of opinion of these
other options were the answer “I don't know”, with, however,
less than 10 points.

More than a 60% thought that the use of the tool was
simple, while the remaining students though its complexity was
average (not simple nor complex). No one thought the
prototype was difficult to use.

About whether their perception of modular programming
had changed after the use of the prototype, more than a 71%
recognized it was changed to some extent or even a lot.

The last two questions were presented in order to get their
opinion about modular support in C++. The first one shows
how they think (>85%) that C++ should have a better modular
programming support, while the last one shows with more than
a 90% that it would be better to avoid including new syntax or
constructions.

V. CONCLUSIONS

Module management support for C++ is very rough.
Though seasoned programmers are already used to this matter,
students find this need of separation of interface and
implementation in two parts (as well as the involved
procedures, such a macro header guards) strange and
unnecessary complex.

Actually this process, once mastered, becomes a
mechanical (though tedious) habit, thus making it possible to
automatize it. In this document, a prototype of a tool for
accomplishing that task, the Cp3-- module manager, has been
presented.

In order to try to prove that modular programming could be
more appealing for beginners, a seminar was given for
undergraduate students. The feedback obtained from the
questionnaires used then, was used in order to improve the tool.

The modifications made to the language are really minimal:
the same keywords have the same meaning in the same
context. The only difference is that now, everything is unified
in a single translation unit which will be automatically
translated in the interface and implementation files required.
Beginners will understand the programming language better,
while seasoned programmers can adapt without trouble in a
matter of minutes. It is also worth noting that traditional code
can be mixed in the very same project.

A tool based in the idea brought by this prototype could be
easily and transparently added to the C++ compiler tool chain.
It does not suppose any overhead nor quality decrease for the
generated code, as its use would only have a slight impact in
compile time. This would be the ideal situation, since such a
decision would mean that the benefits of a tool such as this one
would be available without the need of installing more
software or worrying about using standard C++ r not.
However, it is still possible to employ it as a prototyping
preprocessor, aiming at providing the first approach to the
source code that is actually needed. In that case, a code

formatter will be needed, obtaining that way working code
without syntactic errors.

REFERENCES

[1] Alexandescu, A. The D Programming language. Addison-Wesley
Professional; 1 edition (to be published in May, 2010). ISBN 978-
0321635365.

[2] Appel, A. W. Modern Compiler Implementation in Java: Basic
Techniques. Cambridge University Press (January 13, 1997). ISBN 978-
0521586542

[3] Bell, K., Ivar Igesund, L., Kelly, S. Parker, M. Learn to Tango with D.
Apress 2008. ISBN 1590599608

[4] Biddle, R. L., Tempero, E. D. “Teaching C++. Experience at Victoria
University of Wellington”. IEEE Transactions on education 1995. ISSN
0 8186 5870 3/95.

[5] Böck, H. The Definitive Guide to the NetBeans Platform 6.5. Apress
2009. ISBN: 978-1-4302-2417-4

[6] Digital Mars. The D Programming language.
http://www.digitalmars.com/d/. Access time: 2005 to 2009.

[7] García Perez-Schofield, Baltasar. “Cp3--, a C++ programming language
preprocessor for Module Management”. Technical Report IT1/2009 in
the Department of Computer Science, University of Vigo, 2009.

[8] Harrison, C.J., Sallabi, O.M., Eldridge, S.E.. An initial object-oriented
programming language (IOPL) and its implementation. IEEE
Transactions in education, VOL. 48, NO. 1, February 2005

[9] Heljsberg A., Wiltamuth S., Golde, P.. The C# Programming Language.
Addison-Wesley Professional (October 30, 2003). ISBN 0321154916.

[10] Hohmuth, M. http://os.inf.tu-dresden.de/~hohmuth/prj/preprocess/.
Access time: January 2010

[11] Josuttis, M. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley Professional; 1 edition (August 22, 1999). ISBN
0201379260.

[12] Kölling, M.; Rosenberg J. “Blue—A language for teaching object-
oriented programming,” in Proc. 27th Special Interest Group on
Computer Science Education (SIGCSE) Tech. Symp. Computer Science
Education, 1996, pp. 190–194.

[13] Kölling, M.; Rosenberg, J. “An object-oriented program development
language and a software development environment suitable for
environment for the first programming course,” in Proc. 27th SIGCSE
Tech. Symp. Computer Science Education, 1996, pp. 83–87.

[14] Kölling, M.; Quig, B.; Patterson, A.; Rosenberg, J. The BlueJ System
and its Pedagogy. Computer Science Education, 1744-5175, Volume 13,
Issue 4, 2003, Pages 249 – 268

[15] Naughton, P.; Schildt, H. Java 2: The Complete Reference.
Osborne/Mcgraw Hill Media Group 1999; 3rd edition. ISBN-10:
0072119764

[16] Ritchie, D.. The Development of the C Language. Proceedings of the
Second History of Programming Languages conference, Cambridge,
Mass., April, 1993. Later collected in the History of Programming
Languages-II ed. Thomas J. Bergin, Jr. and Richard G. Gibson, Jr. ACM
Press (New York) and Addison-Wesley (Reading, Mass), 1996; ISBN 0-
201-89502-1

[17] Stroustrup, B. The C++ Programming Language. Addison-Wesley,
1986.

[18] Stroustrup, B. The design and evolution of C++. Addison-Wesley,
1994.

[19] Stroustrup, B. An overview of the standard C++ programming language.
Handbook of Object technology. CRC press LLC Boca Ratón, 1998.

[20] Stroustrup, B. Learning Standard C++ as a New Language. Technical
report in AT&T Labs, 2000.

[21] Vandevoorde, D. Modules in C++ (revisions 2 and 5). Std. committee
documents N1778=05-0138, 2005 and N2316=06-0176, 2007.

[22] LZZ. http://www.lazycplusplus.com/, accessed in July 2010.

	I. Introduction
	A. Motivation

	II. The help given by the module manager prototype
	A. Basic cases of study
	1) Procedural programming
	2) Object-oriented programming

	B. Implementation

	III. State of the art
	IV. Results
	V. Conclusions

