
Cp3--
Modular programming support

for C++

Baltasar García Perez-Schofield

SI1
Faculty of Computer Science

University of Vigo

http://webs.uvigo.es/jbgarcia/prjs/

http://webs.uvigo.es/jbgarcia/prjs/

C++ for lecturing programming

● The trend of using programming languages
designed for teaching, such as Pascal, has
vanished.

● Nowadays, it is expected to lecture
programming by means of a programming
language used in the industry.

● Of course, this raises some problems. Many
of these languages are not ideal for lecturing.
Some others hide too much the internals of
programming.

Approaches for lecturing
programming

● Firstly the imperative paradigm, then the
object-oriented paradigm.
– Typically, first C, then C++

● Objects first
– Typically Java. Sometimes the course is

introduced by a learning environment such as
BlueJ.

● Pure approaches: Lisp or Scheme.

Modular programming

● When should modular programming be
taught?
– For some programming languages, like Java,

you have to mandatorily create one file for each
class, many environments automatize this.

– For many others, specially C-like, modular
programming is an obscure, hand-crafted art.

● Students are either unaware of using
modular programming, or haven't been
taught to use it, due to its complexity on
some programming languages.

Modular programming in C++
for computer science students

● Many programming
language
characterstics
constantly get in the
way.

● Many faculties just
use a single .cpp file
for all exercises.

// math_module.h

#ifndef MATH_MODULE

#define MATH_MODULE

const double PI = 3.14;

double sqr(double x);

#endif

// math_module.cpp

#include “math_module.h”

double sqr(double x)

{ return x * x; }

Modular programming in C++
for seasoned programmers

● Seasoned programmers repeat the same
process again and again, though it is error-
prone and does not improve productivity.

● The only reason this is done this way is due
to the old roots of the C++ programming
language. Linkers that time were not
specially sophisticated.

● New languages such as Java, C#, or even D
(a successor of C++) does not ask you to
divide your code in interface and
implementation.

Is it possible to solve this?

● The standard comitee has in modular
programming one of its interests for new C+
+.

● However, it will not make it in the so called
C++0x.

● The proposal is a radical change in syntax
and use, a la Modula - 2.

Is it still possible to solve this?

● It is possible to precede compilation from
another program, just a preprocessor,
translator or compiler that does the job.

● It will be perceived as a preprocessor for the
language.

● There have been many attempts, like
Preprocess, though they intentionally
change the programming language, or are
complex to use.

Are we using modern languages?

Cp3--

● It is a compiler that sits before the
compilation of a C++ program.

● It is able to divide the code in the appropriate
files, create macro guards, etc.

● It is even able to be more or less strict in
aspects of what is allowed on each module,
which is useful for teaching.

● It can be either added to the compiler
toolchain, or used a code generator.

● Existing files do not need to be modified.

Cp3--

● Code snippets like
the previous ones
are extremely
simplified.

// math.mpp

namespace Math {

const double PI = 3.14;

double sqr(double x)

{

return x * x;

}

}

Cp3--

● Code for
classes is also
simplified.

● Modifiers are
now more
homogeneous.

// point.mpp

class Point {

 inline

Point(double a, double b)

 : x(a), y(b) {}

double getX()

{ return x; }

private:

double x;

double y;

};

Cp3--

// point.h

class Point {

Point(double a,
double b)

: x(a), y(b) {}

double getX();

private:

double x;

double y;

};

// point.cpp

#include “point.h”

double Point::getX()

{ return x; }

Cp3--

● The strictness
level can be
chosen from
command line
switches.

● For example,
in level 3 no
globals are
allowed.

// point.mpp

class Point {

//...

inline double getX()

{ return x; }

private:

double x;

double y;

};

Point p1; // ERROR

Conclusions

● It is possible to simplify modular
programming, make it become more
declarative. Syntax does not need to be
changed at all.

● Kowledge about modular programming is
desirable for students.

● Simplification of modular programming is
desirable for programmers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

