
Doctoral course:
object technologies

IMO Group
Department of computer science

University of Vigo

J. Baltasar García Perez-Schofield
http://webs.uvigo.es/jbgarcia/

Implementation of object-oriented
languages

Terminology

➲ Inheritance:
● By concatenation: the new object (B) is built con-

catening the object it inherits from (A) with the
same object (B).

● By delegation: objects are independent. If an ob-
ject B inherits from another object A, then when it
were unable to satisfy a given message (F), it will
delegate it in its parent (it will send F to A).

➲ Behaviour: The set of methods of an object
(in many programming langages, its class).

➲ State: the values of all attributes in an ob-
ject.

Implementation of object-oriented
programming languages

➲ There are two main possibilities:
● Integration of object-oriented extensions in a tra-

ditional language, such as C or Pascal.
● Create a completely new language.

➲ There are two main kinds of object-oriented
programming languages:

● Class-based ones.
● Prototype-based ones.

Class-based languages

Extending a traditional language
with object-oriented capabilities.

Implementación de Lenguajes
Orientados a Objetos

➲ Discussion about adding object-oriented ca-
pabilities to the C language.

➲ In fact, the first tool Bjarne Stroustrup crea-
ted in order to be able to compile C++ (C
with classes, at that time), was a simple pre-
processor.

Classes

➲ Classes are moulds that allow object cre-
ation.
 class Car {

int numWheels;
int color;
int fuel;
void startUp();

 };
 void Car::startUp() {

fuel--;
 }

Clases

➲ The base for a class is a record (struct).
➲ The only problem is that records can't store

functions ...
➲ ... but this can be simulated:

struct Car {
int numWheels;
int color;
int fuel;

}
void Car_startUp(struct Coche &this) {
 this->fuel--;

}

Métodos

➲ Methods are C functions, which have a this
argument, which is nothing else than the ob-
ject executing that method at a given time.

➲ This means that this points to the appropri-
ate struct Coches for each moment.

➲ Thus, all methods have an extra argument
apart from the ones that would be declared
in a method of this “C with classes” pro-
gramming languages.

Static methods

➲ The only exception are class methods or
static (in C++ terminology). They pertain to
classes, not to objects. This means that this
method, once translated into a C function,
will not have the this parameter.

Translation example
➲ The following program:

 class Car {
 public:

int numWheels;
int color;
int fuel;
static void findGasStation();
void startUp();

 };
 //...
 int main(void) {
 Car myCar;

 myCar.color = 1; /* WHITE */
 myCar.startUp();
 }

Ejemplo de traducción
➲ Would be translated as:

struct Car {
int numWheels;
int color;

}
void Car_findGasStation() {
// ...

}
void Car_startUp(struct Car &this) {
 // ...
}
int main(void)
{
struct Car myCar;
myCar.color = 1; /* WHITE */
Car_startUp(&myCar);

}

Compilation

➲ Note that it is possible to do a strict type-
checking at compile time, as C++ does, in
this preprocessor.

➲ Compile-time type checking is one of the
strongest points of C++, as it is a way of de-
tecting errors before the execution of a pro-
gram.

➲ It is very easy to add visibility criteria
(private, protected).

What is it left for implementation?

➲ Encapsulation is directly supported by the
implementation of translation given here.

➲ Inheritance can be easily added by merging
structures when one derives from another
one. This is inheritance by concatenation.

➲ However, polymorphism is not so simple to
implement. It is needed an structure as the
vtable employed in C++.

Class-based languages

Creation of an object-oriented pro-
gramming language from zero

Classes and objects

➲ It will be mandatorily needed to distinguish
between:

● behaviour (methods, which will be stored in the
class, and the description of the attributes), and

● state (the values of the attributes, which will be
stored in the object).

➲ It is possible to dismiss the class information
at run time, as C++ does, or keep them as
introspection information.

➲ If they are mantained at run time, then they
are known as meta objects.

Clases y objetos

➲ Supposing the same class example than
previously:

● Although it is not necessary, methods can still be
implemented as functions of the programming
language that accept an extra argument this.

● There will be the object, holding the state of the
object, and the metaobject, i.e., the class, as a
common resource for all objects, at runtime.

● The metaobject is consulted in order to resolve
calls to attributes and methods.

Schematic representation of ob-
jects in memory

➲ Metaobjects con-
tain the shift for
each attribute and
pointers to the
functions what play
the role of meth-
ods.

➲ Objects just con-
tain the state.

Schematic representation of ob-
jects in memory

➲ Thus, for resolving myCar.color = 2;,

● firstly the pointer “myCar” is dereferenced.

● from there, the metaclass is reached (the class
information) “Car”.

● The shift for the attribute “color” is found.

● The pointer “myCar” is shifted as specified by the
metaclass for “color”.

➲ Finally, the translation in C language would
be “*((int *)myCar + 4) = 2;”

Compilation time or execution time

➲ The previous process can happen at com-
pile or execution time.

● At compilation time: - flexible, + strong type-
checking. These are languages such as C++.

● In execution: + flexible, - strong type checking.
These are languages such as SmallTalk,
Python ...

➲ It is still posible an intermediate language,
dynamic as Self, but doing compile time
checking. This is the case of Kevo.

Prototype-based programming lan-
guages

Creation of a prototype-based pro-
gramming language

Prototype-based programming lan-
guage

➲ There are no classes, objects are created by
copying other objects.

➲ The objects that are copied are called proto-
types. However, a big difference is that new
objects can be modified independently from
their prototypes.

➲ It's a model very flexible and simple.
➲ It is able to represent the class-based mod-

el.

Implementation

➲ As objects do not depend of a class, and are
independent of the prototype it was copied
from, the structure of the object must contain
state and behaviour (attributes and meth-
ods).

● Methods and attributes are contained in a set, in
the same space in memory.

➲ Inheritance is implemented by delegation, al-
though special programming languages
such as Kevo prove that this is not mandat-
ory.

Schematic representation of ob-
jects in memory

➲ Objects contain
methods and attrib-
utes.

➲ When a message
cannot be satisfied, it
is delegated in its
parent.

➲ Inheritance, by del-
egation, can be flex-
ible and therefore dy-
namic.

Conclusions

Object-oriented programming
models

➲ There are two extremes in the spectrum of
object-oriented programming models.

● The more restrictive model is the class-based
one.

● Strong compile-time tpye-checking.
● Inheritance by concatenation.

● The more flexible model is the prototype-based
one.

● There are not many compile-time verifications.
● Inheritance by delegation.

➲ However, intermediate object-oriented pro-
gramming models are possible (for example,
the programming language Kevo).

Implementation

➲ The characteristics that thus condition the
implementation of a programming language:

● Existence of classes.
● Kind of inheritance.

➲ However, implementation can be separated
in many layers.

● Zero is a virtual machine that implements the pro-
totype-based model. However, there are com-
pilers that generate bytecode to be consumed by
the virtual machine. One of them, J-- does com-
pile-time type-checking, while the other one
PROWL, is a pure prototype-based programming
language.

References

➲ Bjarne Stroustrup, designer of C++:
● Personal web page

● http://www.research.att.com/~bs/
● “The C++ programming language”

● http://www.research.att.com/~bs/3rd.html
● “Design and evolution of C++”

● http://www.research.att.com/~bs/dne.html
● Other publications:

● http://www.research.att.com/~bs/books.html
➲ SmallTalk

● Squeak (current implementation):
http://www.squeak.org/

● SmallTalk documentation: http://www.esug.org/

http://www.research.att.com/~bs/
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/dne.html
http://www.research.att.com/~bs/books.html
http://www.squeak.org/
http://www.esug.org/

References

➲ Self
● Web page: http://research.sun.com/self/index.html
● Implementation:

http://research.sun.com/research/self/papers/elgin-thesis.html
● Other:

http://research.sun.com/research/self/papers/papers.html

➲ Kevo
● http://burks.brighton.ac.uk/burks/foldoc/44/63.htm

➲ Python
● Class-based languages, implemented with prototypes.
● Web page: http://www.python.org/

http://research.sun.com/self/index.html
http://research.sun.com/research/self/papers/elgin-thesis.html
http://research.sun.com/research/self/papers/papers.html
http://burks.brighton.ac.uk/burks/foldoc/44/63.htm
http://www.python.org/

References

➲ Looking for papers:
● http://www.researchindex.com
● http://scholar.google.com

http://www.researchindex.com/

Doctoral course:
object technologies

IMO Group
Department of computer science

University of Vigo

J. Baltasar García Perez-Schofield
http://webs.uvigo.es/jbgarcia/

