
Doctoral course:
object technologies

IMO Group
Department of computer science

University of Vigo

J. Baltasar García Perez-Schofield
http://webs.uvigo.es/jbgarcia/

Persistence

Persistence

➲ Persistence is the term employed for desig-
ning the storing and retrieval of data. In ob-
ject-oriented programming languages, this
data are objects.

➲ Many applications follow a very simple way
of working: they restore data from a previous
session, process them, and store them.

Terminology

➲ Serialization: save the state of the object di-
rectly, as a sequence of bytes.

➲ Swizzling: converting pointers, from their
format in memory to their format on disk,
and viceversa.

➲ Activation: Retrieve an object stored on
disk.

➲ Pasivation: Storing on disk of an object in
memory.

Persistence

➲ The recovery process is known as unflattening,
while the storing process is called flattening.

➲ What is really happening in both processes is a
decoding and a coding process, respectively.

➲ Why not directly save the needed objects, and re-
cover them when necessary?

Object storing

➲ Depending on the programming language:
● JAVA: it has a serializing process to disk, more or

less automatic.
● C++: it does not have any serialization mecha-

nism, you just can use the average record seriali-
zation:

● fwrite(&object, sizeof(object), 1, file);

Object retrieval

➲ In programming languages such as C++, it is only
possible to recover the state of an object stored
prevously; however, it is not known to what class
the object pertains, or even whether it is an object.

➲ In programming languages such as Java, the reco-
very is slightly better, since we can obtain
the .class archive and the stored state archive;
however, the recovery and management of these
files is only simple if the same application that sto-
red them is the one that is going to use them.

Persistence support: difficulties in
current object-oriented program-

ming languages
➲ The most of them allow you to serialize the state of

an object to a file on disk.
➲ However, simple serialization of the state is not

enough in order to work with a stored object. Seria-
lization is needed in order to obtain persistence, but
it is not persistence by itself.

➲ Most of these serialization mechanisms, including
the one present in Java, are in practice limited to
simple objects (i.e., objects that do not store refe-
rences to other objects), and not complex ones.

The true nature of persistence

➲ Research in persistence tries to go one step further
from the idea of just storing objects in files (in the
same fashion that other data is stored).

➲ The objective is to build an storing and retrieval
mechanism, as automatic and transparent as pos-
sible, making obsoletes the concepts of:

● File: is not needed any more.
● Distinction between primary (RAM) and secondary (disk)

memory.

Brief historic survey

➲ Object-oriented databases begun to be de-
veloped and researched at the end of the
70's.

➲ Since then, the concept of persistence went
from the database field to the operating sys-
tems field, and finally, to the programming
languages field.

➲ Research in persistence lost its strength in
mid 90's, and it was absorbed by research
in Aspect Oriented Programming.

Orthogonal persistence

➲ An object can be persistent, regardless its
type (i.e., the class it pertains to).

➲ Objects should be managed homogene-
ously, regardless whether they are persis-
tent or not.

➲ The decision of whether an object is persis-
tent or not is made by the system. It just
cheks whether it is reachable (by following
references) from a persistent root or not.

Persistence: why did not it
triumph?

➲ Backwards compatibility: a lot of running ap-
plications are based on a file system.

➲ Change of programming style: the trust-
worthy file concept disappears, becoming a
different programming fashion.

➲ Performance: persistent systems are not so
efficient as traditional ones.

Mechanisms needed for persist-
ence

➲ Swizzling (pointer conversion)
➲ Clustering (object grouping in the persistent

store)
● How is it possible to group objects in the persist-

ent store, so when a cluster is read, all (or most
of them) the related objects are in memory for the
next processes?

➲ Schema evolution
● How to react when a class changes?

➲ Object caching.
➲ Integrity of the persistent store.

Clustering

➲ Clustering or grouping, is about how to store
together objects in the persistent store.

➲ In relational databases, a record is never
read in read operation, but a cluster (group)
of them. This is also appliable to average
operating system files.

➲ This way, it is expected that the read objects
are going to be the ones used in later opera-
tions, without the need to read from disk.

Clustering

➲ Thus, objects are stored in clusters, so when
an object of this cluster is read, the entire
cluster is brought to primary memory, and
when an object is modified, the entire cluster
is written to disk.

➲ The key point would be to find a grouping
policy minimizing the number of reads
needed in order to work with that objects.

Clustering

➲ We should find an ideal
grouping implying the min-
imal number of disk ac-
cesses.

➲ With the first policy, there
is only one cluster in-
volved.

➲ In the second one, two
clusters.

➲ ... as well as two clusters
in the third one.

Clustering

➲ The first policy (putting all classes and ob-
jects altogether) is the best one, however it
is not possible to group all objects in one
cluster in a real world application.

➲ The second policy stores all classes in a
cluster and all objects in another one. It is
not very feasible as well.

➲ The third one is very common, and it has to
do with the moment of the creation of ob-
jects: each class is saved with its objects.

Clustering

➲ There are some adaptative technics, that
group objects based on statistical calculus
accounting which objects are used together.

➲ While these techniques always give the best
possible clustering, it has been demon-
strated that they are very slow.

Clustering

➲ An intermediate solution is to ask the user
which objects should be grouped together.

● The ODMG 3.0 standard includes syntax to let
the user manage the grouping policies. This is
not transparent at all.

● Other systems just group those objects that were
created in the same session.

● Barbados uses a metaphor of directories, in
which each container is a directory. Users organ-
ize their objects in directories, and, this way, they
are transparently managing the clustering policy.

● Zero uses containers that can be, as Barbados,
identified with folders, but that behave as collec-
tions of objects.

Swizzling

➲ Swizzling, means to translate pointers from
its natural form, in memory, to a codified
form in disk, and viceversa.

➲ A pointer (in C++, or a reference in Java) is
normally substituted by an OID (Object Iden-
tifier), so the object structure in memory can
be rebuilt.

➲ There are two basic strategies for converting
pointers in the recovery stage:

● Eager
● Lazy

Swizzling

➲ When objects are
stored, their point-
ers are substituted
by OID's.

➲ The reverse pro-
cess happens when
those objects are re-
loaded in memory.

Swizzling eager/lazy
➲ Eager

● When an object is loaded, all its pointers are swizzled.
● Barbados employs a mixed system: when a container is

loaded, all references inside it are converted. However, the
container is just a part of the persistent store.

➲ Lazy
● Objects are loaded and only the minimal number of

references are swizzled. Only when those references
are going to be used, are swizzled.

● Oberon-D uses lazy swizzling. When a reference raises an er-
ror of “object not found”, Oberon-D examines whether it is un-
swizzled. In the later case, swizzles it, unmarks the error, and
resumes execution.

Schema Evolution

➲ It is the same problem that happens when in
a relational database a table is changed: all
its records must be adapted.

➲ In an object-oriented database (or a persist-
ent store), this problem happens when a
class changes, i.e., it is modified. All its ob-
jects must be adapted as well.

Schema Evolution

➲ There are also two possible policies for
schema evolution, very similars to the swizz-
ling mechanism.

● Eager: All objects are adapted at the time the
modification of the class is detected.

● Lazy: Objects are adapted as long as they are
used.

Schema Evolution

➲ Eager:
● PJama has a command line tool that accepts

a .class file and a text file describing the adapta-
tion for its objects, and runs all over the persist-
ent store making the necessary changes.

● This tool allows programmers to apply very complex
schema evolutions, but it implies that the persistent
store cannot be in use while the tool is running.

● The main benefit is that, once the tool is finished, the
conversion has also been made and all objects are
synchronised.

Schema Evolution

➲ Lazy:
● O

2
 takes note about every conversion in any

class, and converts objects when they are used,
but not before.

● This means that it supports a versioning system, which
keeps trace of every single modification in a class, and
applies all adaptations for each modification in order,
when an object of that class is used.

● This is an extremely complex system, which makes
various objects of different versions of the same class
coexist in the same persistent store.

● The main advantage is that the system is never offline,
and that objects are only converted when used, so the
conversion does not have to stop the system.

Schema Evolution

➲ A mixture between eager and lazy:
● In Barbados, when a class is changed, all objects

of that class pertaining to the container currently
in use are changed. The remaining objects in
other containers are pending of change. When a
container is loaded, the objects of that class are
converted.

● It tries to get the advantages of both systems: it
does not have to put the system offline, but the
objects in the same container are synchronised.

Applications of persistence
➲ OOOS (Object-Oriented Operating Systems):

● EROS (http://www.eros-os.org/)
● GRASSHOPPER (

http://www.gh.cs.su.oz.au/Grasshopper/)
➲ OOPPS (Object-Oriented Persistent Programming Sys-

tems)
● Barbados (

http://www.lsi.uvigo.es/lsi/erosello/imo/Imospain/pers.html
)

● Pjama (http://www.dcs.gla.ac.uk/pjava/)
● Oberon-D (

http://www.ssw.uni-linz.ac.at/Research/Projects/OberonD.html)
➲ OODBMS (Object-Oriented Database Management Sys-

tems):
● O

2
 (

http://www.dbis.informatik.uni-frankfurt.de/REPORTS/GOODSTEP/goodstep.html)

http://www.eros-os.org/
http://www.gh.cs.su.oz.au/Grasshopper/
http://www.lsi.uvigo.es/lsi/erosello/imo/Imospain/pers.html
http://www.dcs.gla.ac.uk/pjava/
http://www.ssw.uni-linz.ac.at/Research/Projects/OberonD.html
http://www.dbis.informatik.uni-frankfurt.de/%20REPORTS/%20GOODSTEP/goodstep.html

References

➲ Orthogonal persistence
● Atkinson M.P., Morrison R. (1995). “Orthogonality

Persistent Object System”, VLDB Journal v4 n3,
pp319-401, ISSN: 1066-8888

● The first publication trying to state three basic prin-
ciples for standard persistence.

● Orthogonality (independence) of:
● type
● management
● designation of persistent objects

References

➲ ODMG 3.0
● http://www.odmg.org
● Cattel R., Barry D., (eds.), (2003). “The Object

Data Standard: ODMG 3.0”. Morgan Kaufmann
Publishers. ISBN 1-55860-647-4

● ODMG is the stadnard followed by many firms
that sell relational databases with abstraction
layers based in objects, such as ORACLE.

● There are also JDBC implementations of this
standard for Java.

http://www.odmg.org/

References

➲ PJama
● Sun research:

● http://www.sunlabs.com/forest/index.html
● University of Glasgow:

● http://www.dcs.gla.ac.uk/pjava/
● PJama, or persistent Java, was a project finisedh

in September 2000, trying to give persistence
support for Java.

● It was directed by historical experts in persist-
ence.

● It is not completely orthogonal (it violates the
second and third rule), as it tries to keep back-
wards compatibility with existing Java programs.

http://www.sunlabs.com/forest/index.html
http://www.dcs.gla.ac.uk/pjava/

Doctoral course:
object technologies

IMO Group
Department of computer science

University of Vigo

J. Baltasar García Perez-Schofield
http://webs.uvigo.es/jbgarcia/

