
Doctoral course: Object
Technologies

IMO Group
Computer Science Department

University of Vigo

J. Baltasar García Perez-Schofield
http://webs.uvigo.es/jbgarcia/

The prototype-based,
object-oriented model

Prototype-based object orientation

➲ There are two main groups:
● Class-based object-oriented programming lan-

guages: C++, Object Pascal, Java, Eiffel ... they
heavily used in industry.

● Prototype-based object-oriented programming
languages: Self, Kevo, Poet/Mica, Cecil ... all of
them are expermimental, thus they are not used
in industry.

➲ Actually, the prototype-based model is a
superset of the class-based model.

Terminology

➲ State: the attributes (SmallTalk terminology) or
member data (C++ terminology) of an object.
For instance, the color, power ... of a car.

➲ Behaviour: methods (SmallTalk) or member
functions (C++) of an object. For instance, turn-
ing on, accelerate or brake a car.

➲ Message: execution of an object's method. If an
object has a method f(), sending the message f
to O has the same meaning as executing O.f()

Class-based object orientation

➲ A class is a type of
objects, a mould
from which new ob-
jects are obtained,
sharing the same
behaviour, changing
only their state.

Prototype-based object orientation

➲ There are no
classes. All objects
are equal, they per-
tain to the same
category.

➲ New objects are
copied from other
existing ones. Some
of them are proto-
types.

Prototype-based object orientation
➲ Normally, in this

kind of languages
objects can be mod-
ified, appending or
deleting methods
and attributes.

➲ Every object is in-
dependent, self-de-
scribing, without any
need of extra in-
formation.

Inheritance

➲ Inheritance in prototype-based programming
languages is implemented by delegation.

● The object has one or more parent attributes, so,
when it is unable to answer a message, it deleg-
ates it to one of its parents.

➲ In class-based programming languages, in-
heritance is implemented by concatenation.

● The object is composed by the parts defining
each one of the classes it inherits from.

Inheritance implemented by
delegation

➲ There is a chain of
objects pointing to
their parents, linking
each other until
reaching the inherit-
ance root.

Inheritance implemented by con-
catenation

➲ All attributes and methods are available in the
same object (however you need the class in or-
der to interpret them).

Answering messages

➲ When an object is unable to answer a mes-
sage, because it does not have the required
method, it resends the message to the ob-
ject pointed by its parent attribute.

➲ The inheritance relations, instead of being a
special relation, are an specific case of
composition relations.

Answering messages

➲ For instance, given the following objects:
object A
method + foo() {
System.console.write(“foo”);
return;

}
endObject

object B : A
endObject

Answering messages

➲ The message:
B.foo(); // MSG B foo

➲ Does not find the foo method in the B object,
so it follows the parent attribute, pointing to
A, which does have the method, and is fi-
nally executed.

➲ If it were not found, then an error would
raise. which normally would be an exception.
In this case, the exception would be the
method not found one.

Object creation

➲ Since new objects are created by copying
them, it is not necessary to have construct-
ors found in class-based programming lan-
guages.

➲ Objects do not define the data types of at-
tributes, as classes do: they directly store an
initial value.

Object creation

➲ For instance:
object Person
attribute + name = “John”;
attribute + surname = “Doe”;
attribute + telephone = “906414141”;
attribute + age = 18;
attribute + address;
method + toString() {
reference toret;
toret = name.concat(surname);
return toret

}
endObject

Creación de objetos

➲ The Person object will be used to create
new objects, though there are no differences
between this object and any other one.

➲ For instance (in assembler):
reference paula =

Persona.copy(“PaulaMarquez”);
➲ If this message copy is sento to the Person

object, then an exact copy will be created,
with the name “PaulaMarquez”. Its attributes
will need of modification.

Creación de objetos

➲ Creating an object from Person:
reference paula =

Persona.copy(“PaulaMarquez”);

paula.setName(“Rose Mary”);
paula.setSurname(“Ventura”);
paula.setTelephone(“988343536”);
...

El modelo de prototipos incluye al
de clases

➲ Those objects playing the role of prototypes
are the equivalent to classes in class-based
programming languages.

➲ The only diifference is that this model is
much more flexible than the class-based
one.

➲ Even a class can be modified, as in this
model it is just an object.

➲ Delegation is very flexible mechanism, sep-
arating objects from their prototypes, as in
class-based programming languages, but
not behaviour from state.

Dynamic inheritance

➲ In the case that inheritance is implemented
by delegation, another possibility appears:
the fact of being able to change an attribute,
(as it is just an average attribute), pointing to
the parent object, means that an object can
have multiple parents, in sucesion, depend-
ing in the specific moment.

➲ Making use of this characteristic requires
changing the programming style.

Dynamic inheritance

➲ It is possible to
change the parent
of an object at run
time.

➲ It totally contrasts to
the behaviour of
static languages,
which leave it
everything linked at
compile time.

Dynamic inheritace

➲ The insert method of EmptyList:
object EmptyList : List
method + insert(obj) {
parent.insertarPrimero(obj);
parent = OneElementList;
return;

}
method + getElementNumber(n) {
return Nothing;

}
endObject

Dynamic inheritance

➲ The insert method of OneElementList:
object OneElementList : List
method + insertar(n, obj) {
super(1, obj);
parent = NonEmptyList;
return;

}
method + getElementoNumero(n) {
return
parent.getPrimerElemento();

}
endObject

Dynamic inheritance

➲ The erase method of NonEmptyList (which
is also needed in the other two objects):

object NonEmptyList : List
method + borrar(n) {
super(n);
if (this.size() < 2) {
parent = OneElementList;

}
return;

}
endObject

Dynamic inheritance

➲ Its main advantage is that methods can be
written following the kind of object. In
EmptyList, it is not necessary to have the
size() method to actually read the number of
elements of the list, as the list is empty, and
zero can be returned directly. The resulting
source code is simpler.

➲ Its main disadvantage is that it is needed to
coordinate various objects in order to per-
form some tasks. This is error-prone.

Dynamic inheritance

➲ Using Prowl, the inheritance coordination
can be achieved this way:

object myList :
EmptyList(this.size() == 0),
OneElementList(this.size() == 1),
NonEmptyList(this.size() > 1);

➲ The system is in charge of changing par-
ents.

Prototype-based object-oriented
programming languages

➲ Self
● It was created in the Sun Research Laboratories,

and has served as an essay for Java.
● It was the first one to implement the prototype-

based model, invented also by Sun. Self tries to
be as dynamic as possible, avoiding compile-
time checkings.

● http://research.sun.com/research/self/
➲ Io

● It was created by one of the developers of Self,
following its main guidelines.

● http://www.iolanguage.com/

http://research.sun.com/research/self/
http://www.iolanguage.com/

Prototype-based object-oriented
programming languages

➲ Kevo
● Kevo was developed for a doctoral thesis. as a

demonstration of how a prototype-based object-
oriented language could implement inheritace by
concatenation, and compile-time checkings.

● It is less flexible at runtime than Self o Io.
● ftp://cs.uta.fi/pub/kevo

Prototype-based object-oriented
programming languages

➲ Cecil
● Cecil was developed at the University of Wash-

ington. It includes the concept of predicate ob-
jects, using dynamic inheritance to take the
concept of programming by contracto to the ob-
ject-level.

● It is a prototype-based programming language.
● http://www.cs.washington.edu/research/projects/c

ecil/www/cecil.html

Prototype-based object-oriented
programming languages

➲ Zero. Deveoped at the University of Vigo.
● Two high-level programming languages are

available.
● Simple, prototype-based.
● It implements also transparent persistence.
● http://trevinca.ei.uvigo.es/~jgarcia/TO/zero/

http://trevinca.ei.uvigo.es/~jgarcia/TO/zero/

Prototype-based object-oriented
programming languages

➲ Other languages:
● http://www.programming-

x.com/programming/prototype-based.html

References

➲ About Self and the prototype-based model:
● Cuesta, P., García Perez-Schofield, B., Cota, M.

(1999). “Desarrollo de sistemas orientados a ob-
jetos basados en prototipos”. Actas del Congreso
CICC' 99. Q. Roo, México.

● Smith & Ungar (1995). “Programming as an ex-
perience, the inspiration for Self”. European
Congress on Object-Oriented Programming,
1995.

● Ungar & Smith. (1987). “Self: The power of sim-
plicity”. Actas del OOPSLA.

References

➲ About developing applications with Self:
● Ungar, Chambers et al. (1991). “Organizing pro-

grams without classes”. Lisp and Symbolic Com-
putation 4(3), Kluwer Academic Publishers, June,
1991

● Chambers, Ungar, Chang y Hözle. (1991). “Par-
ents are Shared Parts: Inheritance and Encapsula-
tion in Self”. Lisp and Symbolic Computation
4(3), Kluwer Academic Publishers, June, 1991

References
➲ About Kevo and the prototype-based model:

● Taivalsaari, Antero (1996). Classes Versus Proto-
types: Some Philosophical and Historical Obser-
vations. ResearchIndex, The NECI Scientific Lit-
erature Digital Library:
http://citeseer.nj.nec.com/taivalsaari96classes.html

● Antero Taivalsaari (1996): On the Notion of Inher-
itance. ACM Comput. Surv. 28(3): 438-479

● Antero Taivalsaari: Delegation versus Concatena-
tion or Cloning is Inheritance too.
OOPS Messenger 6(3): 20-49 (1995)

● Taivalsa, A., Kevo - a prototype-based object-ori-
ented language based on concatenation and mod-
ule operations. University of Victoria Technical
Report DCS-197-1R, Victoria, B.C., Canada, June
1992

http://citeseer.nj.nec.com/taivalsaari96classes.html
file:///home/db/journals/csur/csur28.html%22%20%5Cl%20%22Taivalsaari96
file:///home/db/journals/oopsm/oopsm6.html%22%20%5Cl%20%22Taivalsaari95

Doctoral course: Object
Technologies

IMO Group
Computer Science Department

University of Vigo

J. Baltasar García Perez-Schofield
http://webs.uvigo.es/jbgarcia/

